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Abstract T cells in vivo migrate primarily via undirected random walks, but it remains unresolved

how these random walks generate an efficient search. Here, we use light sheet microscopy of T

cells in the larval zebrafish as a model system to study motility across large populations of cells

over hours in their native context. We show that cells do not perform Levy flight; rather, there is

substantial cell-to-cell variability in speed, which persists over timespans of a few hours. This

variability is amplified by a correlation between speed and directional persistence, generating a

characteristic cell behavioral manifold that is preserved under a perturbation to cell speeds, and

seen in Mouse T cells and Dictyostelium. Together, these effects generate a broad range of length

scales over which cells explore in vivo.

Introduction
Many immune cells migrate through tissue in search of antigen or pathogens. In some cases, such as

during extravasation from blood vessels and homing to target organs, this migration is guided by

chemokine gradients (Witt et al., 2005; Okada et al., 2005; Germain et al., 2012; Sarris and Sixt,

2015). However, for naive T cells within T cell zones, in situ imaging studies have found that

unguided random walk processes dominate (Miller et al., 2002; Miller et al., 2003; Preston et al.,

2006; Cahalan and Parker, 2008; Beltman et al., 2007; Banigan et al., 2015; Harris et al., 2012;

Worbs et al., 2007; Textor et al., 2011; Beauchemin et al., 2007; Mrass et al., 2006;

Katakai et al., 2013; Mrass et al., 2017, reviewed in Mrass et al., 2010; Krummel et al., 2016).

This observation creates a conceptual challenge: T cells must dwell at scales of microns to make con-

tact with antigen presenting cells (Wülfing et al., 1997; Krummel et al., 2000; Beltman et al.,

2009a; Fricke et al., 2016), yet migrate over scales of millimeters to find rare targets. A conven-

tional diffusive random walk struggles to access these varied scales efficiently, since a walker that

dwells near another cell for 1 min would require several days to travel 1 mm. Several authors have

suggested that T cells may have an intrinsic behavioral program that allows them to explore over dif-

ferent length scales (Harris et al., 2012; Krummel et al., 2016; Mempel et al., 2004). However,

testing this hypothesis via in situ fluorescence microscopy raises inherent technical challenges: to

observe a single cell accessing a broad range of spatial scales, it is necessary to have micron scale

resolution over fields of view of millimeters, with low enough photodamage to observe the same

cells at high spatiotemporal resolution over long periods. For example, one intriguing proposal is

that T cells perform Levy flight (Harris et al., 2012), an anomalous random walk characterized by a

power-law distribution of step sizes. Such random walks have been described in detail in the physics

and ecology literature (Shlesinger et al., 1995; Bartumeus et al., 2005; Viswanathan et al., 2011),

and their scale-free behavior provides a natural way for foragers to accelerate searches in many con-

texts (Bartumeus et al., 2002). However, observation over short periods cannot distinguish between

Jerison and Quake. eLife 2020;9:e53933. DOI: https://doi.org/10.7554/eLife.53933 1 of 26

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.53933
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Levy flight and heterogeneity amongst individual walkers (Petrovskii et al., 2011), both of which

can create a broad distribution of displacements. More generally, we would like to understand

whether there is a statistically-consistent behavioral program carried out by these cells.

To address this question, we used selective plane illumination microscopy (Pitrone et al., 2013;

Power and Huisken, 2017) to observe the native population of T cells in the live larval zebrafish (Tg

(lck:GFP, nacre-/-) Langenau et al., 2004), over millimeter fields of view and periods of a few hours.

We observed a population of motile cells in tissue in the tail of the zebrafish, primarily in the tail fin

and larval fin fold (Figure 1A, Figure 1—video 1). We chose this population for further study

because of the potential to measure the interstitial exploration behavior of the cells over long

length-scales, and to dissect the variation in behavior over a populations of cells.

Figure 1. Cell motility behavior is inconsistent with Levy flight. (A) Maximum Z projection of a Tg(lck:GFP, nacre-/-)

zebrafish at 12 dpf. This projection represents the first frame of a timecourse; see Figure 1—video 1. (B)

Brightfield of the region of tissue shown in A. Stitching across three tiles was performed in ImageJ. (C) Mean

squared displacement as a function of time lag. The cells migrate super-diffusively on scales of a few minutes. The

MSD for a persistent random walk is fit to the data (Materials and methods, Appendix 1). Error bars represent 95%

confidence intervals on a bootstrap over n = 316 trajectories containing all measured time intervals. (See also

Figure 1—figure supplement 2). Inset: linear scale for the first 10 min. (D) The velocity power spectrum, averaged

across all trajectories (n = 634). A Levy (scale-free) process consistent with the short time behavior would result in a

continuation of the high frequency slope (dashed line). Instead, we observe a timescale at a few minutes. (E)

Distribution of bout lengths within a trajectory (Materials and methods), fit with a stretched exponential (n = 35819

bouts). The fitted stretch parameter b ¼ :9. For all panels, trajectories were pooled from n = 16 fish.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 1:

Source data 1. Source data for Figure 1C.

Source data 2. Source data for Figure 1D.

Source data 3. Source data for Figure 1E.

Figure supplement 1. As in Figure 1B, with annotations.

Figure supplement 2. MSD for all trajectories tracked through 15 min.

Figure 1—video 1. T cell dynamics in the larval zebrafish tail and fin fold.

https://elifesciences.org/articles/53933#fig1video1
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Rather than a single broad distribution of speeds sampled by all cells, as in Levy flight, we

observed considerable heterogeneity in both speed and turning behavior across cells. This observa-

tion, together with prior literature (Maiuri et al., 2015), prompted us to analyze the distribution of

cell behaviors in a space defined by speed and turning statistics. Surprisingly, cell behaviors fell on a

one dimensional manifold in this space, characterized by a coupling between speed and directional

persistence. Analysis of previously-published data in mouse T cells (Gérard et al., 2014) and Dic-

tyostelium (Dang et al., 2013) within this framework showed that their migration statistics fell along

a similar manifold. Our results show that a wide variation in speeds, combined with a coupling

between speed and persistence, generate a broad distribution of length scales of exploration in

vivo.

Results

Cell motility behavior is inconsistent with Levy flight
To investigate the statistical properties of T cell motility in our system, we measured cell trajectories

within the tissue posterior to the anus (Materials and methods, Figure 1—video 1, Figure 2—video

1). This region is composed primarily of the tail fin and larval fin fold, which represent a millimeter-

scale tissue over which the cells can potentially migrate. We note that cells in circulation, while pres-

ent, move orders of magnitude faster than those in tissue, and thus are not included in our observa-

tions or analysis. Note also that our observations were performed in the absence of an external

perturbation such as an infection.

We first evaluated evidence for Levy flight behavior, as opposed to persistent random walks

(Beauchemin et al., 2007; Beltman et al., 2007; Banigan et al., 2015; Harris et al., 2012), in our

system. The distinction hinges on whether the statistics of individual trajectories are scale-free, so

that super-diffusive behavior continues to long times; or if, alternatively, individual trajectories are

diffusive at long times but there is heterogeneity across the population. To address this question,

we performed a standard analysis of mean squared displacement as a function of time interval. Con-

sistent with previous measurements (Beauchemin et al., 2007; Beltman et al., 2007; Banigan et al.,

2015; Harris et al., 2012), we observed a faster-than-linear increase in MSD at early times, indicat-

ing super-diffusive behavior, with a best-fit line in surprisingly good quantitative agreement with pre-

vious observations up through 10 min (Harris et al., 2012; Fricke et al., 2016; Figure 1C).

However, we observed a transition at the scale of minutes, consistent with persistent random walks,

and inconsistent with Levy flight (also note the straight line on a linear scale, Figure 1C inset, charac-

teristic of diffusive behavior). Note that while we have examined the subset of longer trajectories to

measure the behavior through an additional order of magnitude in time, this result also holds when

examining all trajectories through 15 min (Figure 1—figure supplement 2). To further test for an

intermediate timescale, we computed the velocity-velocity power spectrum, using secant-approxi-

mated velocities along each trajectory (Materials and methods). This quantity captures the timescale

at which the velocities become decorrelated, if it exists; for a Levy-flight process the same negative

slope is observed at all frequencies (Viswanathan et al., 2005), while a persistent random walk

model passes towards zero slope at low frequencies (Viswanathan et al., 2005; Pedersen et al.,

2016). Consistent with the MSD analysis, we observe two regimes, with a clear timescale on the

order of minutes (Figure 1D). Finally, we computed the distribution of lengths between direction

changes (bout lengths) within a trajectory (Materials and methods), scaled by the average bout

length as suggested in Petrovskii et al., 2011, and did not observe the characteristic Levy-flight

power law (Figure 1E).

Motility behavior is heterogeneous across cells
Since we did not find support for Levy flight in our system, we next evaluated evidence for cell-to-

cell heterogeneity. From examples of velocity traces (Figure 2A,C–E, Figure 2—video 1), we

observed substantial variation in speed between cells, that can persist over spans of a few hours.

These trajectories are not atypical: overall, 88% of trajectories have distributions of secant-approxi-

mated speeds that are inconsistent with the speed distribution pooled on all trajectories (KS test,

p<:01). Interestingly, we also found significant heterogeneity in cell turning behavior: 67% of cells

had turn angle distributions inconsistent with the overall distribution (KS test, p<:01).
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To evaluate the rate of speed switching in our system, we measured the average speeds of indi-

vidual trajectories on non-overlapping ~20 min intervals, and evaluated how the speed ranks change

as a function of the time between intervals (Figure 2B). We found a high correlation between speeds

on adjacent non-overlapping intervals, which decays slowly on the timescale of the measurement.

Thus each cell samples a characteristic distribution of speeds that is stable over one to two hours.

For the remainder of the analysis, we will consider the average speed to be a property of the trajec-

tory; we return to consider the implications of speed switching in the discussion.

We note that we observed variation in the distributions of cell speeds between samples: overall,

48% of the variance in cell speeds can be explained by the sample identity. Nonetheless, the distri-

butions of cell speeds within each sample are broad and overlapping (Figure 2—figure supplement

1), accounting for the majority of the variance (52%). Amongst other effects, sample to sample varia-

tion could be the result of differences in antigen environment or global cytokine levels between fish.

Figure 2. Cell speed and turning behavior are heterogeneous. (A) Example of trajectories recorded over 3 hr at a

12 s interval (Tg(lck:GFP, nacre-/-) zebrafish; 10 dpf). Here we show a maximum Z projection of the 900th frame

with trajectories overlaid; see Figure 2—video 1 for the timecourse. Examples of four cell trajectories, with a

range of characteristic speeds, are colored. (B) Spearman rank correlation between trajectory speeds measured on

non-overlapping 19.5 min intervals, as a function of the time between the beginning of the intervals. Error bars

represent 95% confidence intervals on a bootstrap over trajectories. The null model was constructed by permuting

measured speeds across all the trajectories at each interval; error bars represent 95% confidence intervals over the

permutations. (Calculations performed on the n = 321 trajectories of at least 117 min in length.) Trajectories were

pooled over n = 16 fish. (C) Velocity traces for the four cells highlighted in A. (D) Secant-approximated speed

distributions for each cell from A, compared with the distribution over all cells (grey;n = 98141 steps). (E) Turn

angle distributions for each cell from A, compared with the distribution over all cells (grey;n = 96122 turn angles).

The online version of this article includes the following video, source data, and figure supplement(s) for figure 2:

Source data 1. Source data for Figure 2B.

Source data 2. Source data for Figure 2C.

Source data 3. Source data for Figure 2D.

Source data 4. Source data for Figure 2E.

Figure supplement 1. Range of speeds by sample.

Figure 2—video 1. Heterogeneity of T cell migration.

https://elifesciences.org/articles/53933#fig2video1
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Heterogeneous cell migration statistics fall on a behavioral manifold
Previous work (Maiuri et al., 2015) has suggested that actin flows may generate a coupling between

speed and directional persistance in migrating cells. This study generates the hypothesis that cells,

in general, are not free to pick any turn and speed statistics, but rather that there may be underlying

biophysical constraints. To investigate this hypothesis in our system, we divided the cells into quin-

tiles based on speed, which we refer to as speed classes. We observed strong variation in the distri-

bution of turn angles amongst speed classes (Figure 3A): fast cells are most likely to turn shallowly,

slow cells are most likely to turn around, and the distribution varies smoothly across the speed clas-

ses. This dependence could be driven by a local coupling between speed and turn angle: cells tend

to go straighter whenever they go fast, which the faster cells do more often. Alternatively, it could

be driven by an overall behavioral difference between fast and slow cells. To distinguish these possi-

bilities, we measured the average turn angle as a function of the size of the steps surrounding it

(Figure 3B). We found that both of these effects contribute: all cells go straighter during faster peri-

ods, but for a given step size, slow cells are more likely to turn sharply.

The relationship between speed and turning suggests that there may also be systematic differen-

ces in the scaling of the MSD at short times between cells. In particular, variation in speed alone

amongst individuals would not change the shape of the MSD, which would collapse when appropri-

ately scaled (Appendix 1). On the other hand, the systematically shallower turns of faster cells would

be expected to boost the slope of their MSD at short times, an effect we observe in the data

(Figure 3C).

The analysis at the level of speed classes suggested that there might be a single scalar variable,

for which the cell’s average speed is a good proxy, that determines a number of higher-order statis-

tics characterizing the cell’s migration behavior. To test this at the level of individual trajectories, we

chose two summary statistics that capture the cell’s turning behavior: the average of the cosine of

the turn angles along the trajectory, and the correlation between speeds and turn angles along the

trajectory. The former is a summary of the overall distribution of turn angles for that cell, while the

latter captures the degree of additional local coupling between speed and turn angle. Together with

the cell’s speed, these two summary statistics form a three-dimensional behavioral space. We

observed that the cell trajectories fall close to a curve in this space (Figure 3D). In particular, 73% of

the variance in the average cosine can be explained by cell speed, with some residual variance due

to the stochasticity of the process (7%) and other unknown effects (20%) (Figure 3—figure supple-

ment 1). Thus T cell migration statistics can be organized into a one-dimensional behavioral mani-

fold, characterized by a strong dependence between speed and turning behavior.

Model predicts wide variation in length scales of exploration across the
population
Our observation of a behavioral manifold suggests that, despite the apparent heterogeneity in

migration strategies, there may be a common program with a single underlying variable, consistent

with the work of Mauri et al. In this view, a cell’s location on the manifold reflects its internal value of

this control variable, which in turn dictates its random walk behavior. Given the results of our MSD

analysis, to determine candidates for a single-parameter migration model, we started with the

canonical persistent random walk (Ornstein-Uhlenbeck) process (Uhlenbeck and Ornstein, 1930):

dvi

dt
¼� 1

P
vi þ

S
ffiffiffi

P
p h; (1)

where v is the velocity, h is a white noise term, and i labels the velocity component. This model has

two free parameters: the speed, S, and the persistence time, P, which is the average time before a

cell turns. (Note that speeds inherently vary along trajectories in this model; S controls the average

speed.) Our observations suggest that there may in fact only be one control parameter; in particular,

because faster cells tend to make shallower turns, we expect P to increase with S. To determine the

relationship between these two variables, we measured the persistence time, averaged along each

trajectory, as a function of cell speed, and found a linear dependence (Figure 4A). This suggests the

following simple model of cell motility:
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Figure 3. Heterogeneous cell migration statistics fall on a behavioral manifold. (A) Distribution of turn angles amongst cells grouped by speed class.

The distribution varies smoothly from faster cells, which tend to go straighter, to slower cells, which tend to turn around more often. Error bars

represent 95% confidence intervals from a bootstrap over trajectories in each speed class. The legend reports the mean speed for trajectories in each

class. (B) Turning behavior conditioned on current cell speed. The average of the cosine of the turn angle as a function of the average length of the

steps on either side. Cells are grouped into speed classes as in A. Error bars represent 95% confidence intervals from a bootstrap over trajectories in

each speed class. (C) Mean squared displacement by speed class. Due to the variation in turning behavior, the faster cells appear initially more

superdiffusive. Error bars represent 95% confidence intervals from a bootstrap over trajectories in each speed class. All speed class calculations were

performed on the n = 569 trajectories that included all time intervals in the MSD analysis. (D) Organization of cell behavior into a curve in a three

Figure 3 continued on next page
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dvi

dt
¼� 1

S
a
þb

viþ
S
ffiffiffiffiffiffiffiffiffiffiffi

S
a
þb

q h (2)

where a is a constant with units of acceleration, b is a constant with units of time, and both are

constrained by the empirical relationship in Figure 4A. We call this the speed-persistence coupling

model (SPC).

Figure 3 continued

dimensional behavioral space. Each point represents a trajectory, and we show the average speed, turn angle, and local speed-turn correlation. Grey:

projection into the x-y plane. The trajectories shown in Figure 2 are colored. Trajectories pooled over n = 16 fish.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3A.

Source data 2. Source data for Figure 3B.

Source data 3. Source data for Figure 3C.

Source data 4. Source data for Figure 3D.

Figure supplement 1. Variance explained by speed-turn relationship.

Figure 4. Model predicts wide variation in length scales of exploration across the population. (A) Mean persistence time as a function of cell speed,

measured along trajectories (n = 710). Error bars represent 95% confidence intervals from a bootstrap over trajectories. UPT: Uniform persistence time;

SPC: Speed-persistence coupling. (B) Scaling of the effective diffusion constant with cell speed. Except for a constant offset, parameters are fixed based

on the speed-persistence relationship in A. Error bars represent 95% confidence intervals on a bootstrap over trajectories. Numbers of trajectories in

each time interval: n = 704; n = 654; n = 607; n = 558; n = 523. Trajectories were pooled over n = 16 fish.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for Figure 4A.

Source data 2. Source data for Figure 4B.

Figure supplement 1. Statistics from Figures 3 and 4, with timepoints subsampled.

Figure supplement 2. Speed-persistence relationship with shallower cut-off angle.
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As in other persistent random walk models, SPC walkers are diffusive at long times; the MSD

scales linearly with time, and the ratio between these quantities defines an effective diffusion con-

stant (Appendix 1):

Deff �
MSD tð Þ

4t
¼ 1

2
S2P: (3)

Due to the dependence of P on S, the SPC model predicts a strong scaling of the effective diffu-

sion constant with cell speed. We tested this prediction at several time intervals t and found good

quantitative agreement between the model and the data (Figure 4B). In particular, heterogeneity in

speeds creates a broad range of effective diffusion constants, spanning 2 orders of magnitude. The

coupling between speed and persistence amplifies this effect, generating five-fold more variation in

the effective diffusion constants across the cells than would be expected for a uniform persistence

time model (UPT). We also note that the collapse of Deff measured at different time lags t provides

additional corroboration of diffusive (as opposed to Levy/super-diffusive) scaling.

The analyses in this and the previous section depend on measured cell speeds and turn angles,

which are an imperfect proxy for the true instantaneous process (Beltman et al., 2009b). In particu-

lar, both noise in the cell locations and finite sampling intervals can introduce bias in the measured

speeds, which could in principle generate spurious relationships between measured speed and turn-

ing behavior. We took two approaches to addressing the sensitivity of our conclusions to these

issues. First, we addressed sensitivity to sampling rate by repeating the analyses above, subsampling

timepoints by a factor of 2. This makes the turning behavior of the slowest two speed classes harder

to distinguish, because they are rarely persistent over more than one timestep (Figure 4—figure

supplement 1A,D), and introduces more noise in the local coupling and persistence relationships

(Figure 4—figure supplement 1B–C), but otherwise does not alter the structure of the correlations

(Figure 4—figure supplement 1A–F). Second, we assessed the potential biases introduced by mis-

location noise and finite sampling to the speed-persistence relationship in simulations (Appendix 1,

Appendix 1—figure 1). We found that mislocation noise can lead to spurious correlations between

speed and persistence at the slow end of the speed spectrum, but cannot account for the consistent

correlation we observe across speeds.

Additionally, we note that our measured trajectories stay predominantly within the tail fin and lar-

val fin fold (Figure 1—figure supplement 1), suggesting a boundary between the fin fold and mus-

cle region of the tail. Such a boundary could influence the MSD. However, we compared to the MSD

calculated on one held-out sample not subject to these boundary effects and observed no difference

(see Appendix 1—figure 2).

Finally, we note that the SPC Langevin model describes the effective diffusive behavior of the tra-

jectories and their scaling at longer times, but may not capture all the details of the microscopic

dynamics. In particular, the propensity of trajectories to turn backwards (peak at � ¼ p radians,

Figure 3A) is not captured by this model.

Manifold is preserved under a drug perturbation to cell speeds, and in
mouse T cells and Dictyostelium
We next asked about the robustness of the observed behavioral manifold under a perturbation to

cell speeds. Given the role of actin nucleation and remodeling in leukocyte motility (Vicente-

Manzanares et al., 2002), we chose the drug Rockout, a known Rho kinase inhibitor affecting this

pathway (Barros-Becker et al., 2017), as a candidate for perturbing cell speed, and repeated the

measurements and analysis of cell migration behavior in the presence of the drug (Materials and

methods). We found that the distribution of cell speeds shifted downwards, but we still observed a

quantitatively similar positive relationship between speed and turning behavior (Figure 5A,B). This is

consistent with a model where the perturbation primarily shifted an internal cell state variable that

determines location along the behavioral manifold, which in turn dictates both speed and turning

behavior, although we note that there may be an additional small shift towards shallower turns in

the drug condition.

Finally, we analyzed published data from two other species, mouse T cells in situ (Gérard et al.,

2014) and Dictyostelium (Dang et al., 2013), in this framework. While some of the analyses that

depend on longer time traces and larger cell numbers are not possible with these datasets, we
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tested the relationship between average turn angle and cell speed. We found that this correlation

held amongst the control cells in both studies (Figure 5C–F). This suggests that, as for zebrafish T

cells, there is heterogeneity in speed and turning behavior amongst the cells, and is consistent with

a similar behavioral manifold. In the two published studies, genetic perturbations that knocked out

or down one member of the actin remodeling machinery were used: a knockout of the non-canonical

myosin Myo1g in one case, and a knockout of the Arp2/3 inhibitor Arpin in the other. In each case,

the perturbation had a substantial effect on the distribution of cell speeds (Figure 5, E-F). However,

in both cases, a quantitatively similar positive relationship between the speed and turning behavior

amongst the perturbed cells was preserved.

Figure 5. Manifold is preserved under a drug perturbation to cell speeds, and in other species. (A) Correlation between the average cosine of the turn

angles along the trajectory and cell speed, for cells in control and Rockout-treatment conditions. Data for all cells is shown as well as a binned average.

Error bars represent 95% confidence intervals on the binned average on a bootstrap over cells. (B) The distribution of speeds amongst control and

Rockout-treated trajectories. The treatment lowers cell speeds but maintains the relationship between speed and persistence. Statistics based on

trajectories pooled over n = 16 control fish (n = 712 trajectories) and n = 6 Rockout treatment fish (n = 236 trajectories). (See also Figure 5—figure

supplement 1. (C) As in A, for mouse T cells (data from Gérard et al., 2014). The perturbation is a genetic knockout of a non-canonical myosin motor,

Myo1g. E. As in A, for Dictyostelium (data from Dang et al., 2013). The perturbations are a knockout and rescue of the Arp2/3 inhibitor Arpin. (control:

n = 42; Myo1g KO: n = 123) (D,F) Distributions of cell speeds for the control and treatment conditions shown in C,E. (WT: n = 42; Arpin KO: n = 38;

Arpin rescue: n = 42) In each case, the distribution of speeds shifts, but the cells tend to move along the speed-turn curve. ).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data for Figure 5A.

Source data 2. Source data for Figure 5B.

Source data 3. Source data for Figure 5C.

Source data 4. Source data for Figure 5D.

Source data 5. Source data for Figure 5E.

Source data 6. Source data for Figure 5F.

Figure supplement 1. Figure 5A,B, including only paired control-Rockout treatment samples.
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Single cell RNA sequencing suggests transcriptional heterogeneity in
actin nucleation activity
Our observation that cells maintain characteristic distributions of speeds over periods of a few hours

suggests that there may be variation in transcriptional state that underlies some of the heterogeneity

in cell migration behavior. To investigate this possibility, we performed single-cell RNA sequencing

on cells isolated from the tail of 15 dpf Tg(lck:GFP) zebrafish. To assess the fidelity of the marker, we

sorted GFP+ cells from an unbiased FSC/BSC gate (Materials and methods). We used standard

dimensional reduction and clustering methods (Materials and methods) to identify 330 putative T

cells (Figure 6—figure supplement 1). Unexpectedly, we also identified a population of epithelial

cells that may mis-express lck at low levels (Materials and methods, Figure 6—figure supplement 1,

Figure 6—figure supplement 2).

We next used a self-assembling manifold algorithm designed to detect subtle variation

(Tarashansky et al., 2019) to examine finer-scale structure within the putative T cell cluster. This

algorithm revealed a plate effect related to one of our sort plates (Figure 6—figure supplement 3),

which we therefore excluded from the remainder of the analysis. We repeated the SAM analysis on

the remaining (n = 237) cells, and identified two main subtypes (Figure 6A–B), consistent with a pre-

vious report (Tang et al., 2017). We note that the prior study identified the smaller subpopulation

as NK cells; however, in addition to the previously-reported marker genes, we find that these cells

have moderate expression of the T cell receptor trac. We have therefore chosen not to annotate

these as NK cells.

Both subpopulations of cells express high levels of genes canonically involved in actin nucleation

and remodeling in the leukocyte cytoskeleton (Vicente-Manzanares et al., 2002; Takenawa and

Suetsugu, 2007) (WASP/ARP2/3 pathway; Figure 6B); indeed, these genes are amongst the top dif-

ferentially expressed between the T cells and putative epithelial cells in our sample (Figure 6—fig-

ure supplement 1, Figure 6—figure supplement 2). To analyze variation in this pathway amongst

the T cells, we chose arpc1b, a subunit of the ARP2/3 complex, as a reference gene because ARP2/3

directly nucleates actin during ameboid cell migration, and its inhibition is known to modulate cell

speed (Dang et al., 2013). We tested the rank correlation of expression of all other moderate to

high expressed genes with arpc1b (Figure 6C). We found that 3 of the four top correlated genes

(those that are statistically significant after Bonferonni correction) are also canonically involved in this

pathway: the actin monomer genes act2b and act1b, as well as the upstream activator cdc42l. Unex-

pectedly, the fourth gene encodes a lincRNA whose biological function is unknown. Thus we detect

real, although not strong, co-variation in genes involved with actin nucleation, which may create

long-lived cell-intrinsic variation in motility.

While the two T cell subpopulations separate in some dimensions of gene expression space,

including, for example, the marker genes shown in Figure 6B, both groups express arpc1b and its

correlates. Indeed, the distributions of expression for the two subtypes overlap for these genes

(Figure 6D). This is consistent with a single continuous motility axis, without two distinct subgroups,

as in our microscopy data.

We have observed transcriptional heterogeneity in actin nucleation genes, which may underly var-

iability in motility states. This observation suggests that cells may vary along a ‘nucleation high’ to

‘nucleation low’ axis, generating a range of long-lived speed states. However, it remains technologi-

cally infeasible to directly associate a cell trajectory with a gene expression profile, so a direct test

awaits future work. Additionally, we note that regulation that occurs at the protein level, for example

through phosphorylation states, is likely very important to shorter timescale variation in cell motility

behavior, and is not reflected in gene expression.

Discussion
We have measured and analyzed the variability in cell motility amongst the T cells of the zebrafish

tail. We found that cell motility statistics are inconsistent with Levy flight; rather, speeds are hetero-

geneous from cell to cell. We note that a previous study that reported modified Levy flight in T cells

(Harris et al., 2012) was carried out in a very different biological context (adoptively transferred

CD8+ T cells in mouse CNS in the presence of an infection), which could drive differences in motility

behavior. However, we note that the statistics of our trajectories closely resemble those measured

by Harris et al. up through the 10 min time lag analyzed in that study.
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We also found that migration statistics from zebrafish T cells as well as mouse T cells and Dictoys-

telium fell on a behavioral manifold, characterized by a coupling between speed and directional per-

sistence. We note that, in general, heterogeneity of motility behavior across a population could be

caused by the tissue context rather than by cell-intrinsic factors. However, the effects of the drug

perturbation, as well as the effects of the genetic perturbations from Gérard et al., 2014 and

Dang et al., 2013, support a cell-intrinsic basis for the behavioral manifold we observe here. In par-

ticular, we performed trials in which the same regions of tissue were imaged and cells tracked before

and after addition of the drug (Figure 5—figure supplement 1); the observed changes in migration

Figure 6. Single cell RNA sequencing shows moderate covariation in actin nucleation across T cells. (A) UMAP dimensional reduction of single-cell RNA

sequencing profiles of zebrafish T cells (Materials and methods) shows two main subtypes. Cluster colors are shared across panels A, B, D, and E. For a

list of differentially-expressed genes between clusters, see Supplementary file 1. (B) Violin plots of marker genes in common to both subtypes

(including immune, T cell, and motility markers), as well as selected marker genes for each subtype. (For the list of differentially-expressed genes, see

Supplementary file 1). (C) Distribution of a rank correlation coefficient-related statistic between arpc1b and other moderate and high expressed

genes, amongst all T cells (Materials and methods). Statistically significant outliers (after Bonferonni correction) are colored and labeled. The top

correlated genes include three also involved in actin nucleation activity. (D) Correlation between expression (counts + 1) of arpc1b and actb2 across the

T cells, with colors as in A. (E) Correlation between expression (counts + 1) of arpc1b and cdc24l, with colors as in A. Analysis performed on n = 237

cells (see Main Text, Materials and methods).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data for Figure 6A.

Source data 2. Source data for Figure 6B.

Source data 3. Source data for Figure 6C.

Source data 4. Source data for Figure 6D.

Source data 5. Source data for Figure 6E.

Figure supplement 1. Comparison between UMAP and index sort, over all cells.

Figure supplement 2. Differential expression between the two main clusters.

Figure supplement 3. Plate effect in variation within T cell cluster.
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statistics must then be caused by the drug’s effect on the cell’s internal state, not by the tissue

context.

The drug perturbation experiment and analysis of data from the other species suggests that there

is one underlying cell-intrinsic variable that jointly controls speed and directional persistence. Maiuri

et al. also observed a coupling between speed and directional persistence across multiple cell types,

and performed elegant in vitro work to demonstrate that actin retrograde flow speed is correlated

both with cell speed and persistence time (Maiuri et al., 2015). Using single cell RNA sequencing,

we observed covariation amongst T cells in a group of genes involved in actin nucleation. This sug-

gests that cells vary transcriptionally in their actin nucleation activity. Levels of these genes may rep-

resent an underlying cell control variable that determines actin retrograde flow speeds and hence

both cell speed and persistence. A direct test of this hypothesis awaits development of techniques

to link a single cell’s trajectory and its gene expression profile.

In two previous studies, genetic perturbations were performed that made cells faster and more

persistent on average (Gérard et al., 2014; Dang et al., 2013). Our results suggest that this connec-

tion may be general to the cells rather than specific to the perturbation. In particular, shifts in the

average turning behavior have been used to argue that Arpin and Myo1g control cell steering. Our

analysis suggests that increasing cell speed may in many cases increase straightness, and vice versa,

so that the effect on cell steering may be indirect.

We have analyzed cell migration in the context of a speed-persistence coupling model, which is a

modified Orenstein-Uhlenbeck model where the speed and persistence time parameters are explic-

itly co-dependent. We chose this as the minimal model that captures both the diffusive behavior at

long times and the coupling between speed and persistence, allowing for a prediction of the range

of effective diffusion constants, and hence length scales of exploration, amongst the cells (Figure 4).

Another feature of measured trajectories, in previous studies and in our work, is variation in speed

along the trajectory, sometimes referred to as intermittency. We note that the Langevin dynamics of

the SPC model inherently generate variation in speed, including pauses, along trajectories: the

speed parameter sets the distribution of instantaneous speeds sampled by the cell. Other

approaches have included adding pauses to a model with a fixed distribution of step sizes

(Harris et al., 2012). Maiuri et al. considered an explicitly active model where actin dynamics within

the cell generated motility. While slightly more complex, this model has several interesting features,

including that the cell motility emerges from internal biophysical mechanisms, and also that it produ-

ces multiple phases of migratory behavior, including one with additional intermittency (Maiuri et al.,

2015). Future work could use transgenic methods to label actin in the zebrafish to directly test this

active matter model in vivo. Another mechanistic basis for intermittency was demonstrated by

Dong et al., 2017, who showed that spontaneous cytosolic calcium signaling generates pauses dur-

ing basal T cell motility. Investigation of this mechanism and its potential role in producing the speed

fluctuations observed in our system would also be an interesting subject for further work.

Our results show that across the population, cells explore over a very broad range of length

scales, covering orders of magnitude of variation in effective diffusion constants. This variability is

driven primarily by differences in average speed between cells, which is amplified by the observed

coupling between speed and persistence. However, analysis of the effectiveness of this variation as a

search strategy, as compared with modified Levy flight (Harris et al., 2012) or models with addi-

tional intermittency (Maiuri et al., 2015), would require a detailed knowledge of the distribution of

targets in the tissue as well as an additional order of magnitude in time of observation of the cell tra-

jectories in our system, to fully characterize the slow timescale speed switching. We additionally

note that several studies (Dustin et al., 1997; Mempel et al., 2004; Kawakami et al., 2005;

Castellino et al., 2006; Moreau et al., 2015; Dong et al., 2017; Negulescu et al., 1996) have indi-

cated that T cells react to local chemical signals by changing speed–in particular, that calcium signal-

ing can cause cell arrest, and this is important to contact with antigen presenting cells and antigen

recognition. This suggests that the local signaling environment may also be important to shifting the

cell behavior along the manifold. Detecting these signaling and recognition events in vivo in real

time would be an exciting avenue for future work.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(Danio rerio)

Tg(lck:GFP) Gift from Aya Ludin-Tal
and Leonard Zon
Langenau et al., 2004

Chemical
compound, drug

Tricaine-S, MS-222 Pentair

Chemical
compound, drug

Rockout Sigma Aldrich #555553

Software, algorithm Ilastik Sommer et al., 2011

Software, algorithm Custom analysis software This paper Available at
https:// github.com/
erjerison/ TCellMigration

Software, algorithm STAR Dobin et al., 2013

Software, algorithm htseq Anders et al., 2015

Software, algorithm SAMalg Tarashansky et al., 2019

Zebrafish lines and procedures
Tg(lck:GFP, roy-/-, nacre-/-) zebrafish (Danio rerio) (Langenau et al., 2004) were obtained as a gener-

ous gift from Dr. Leonard Zon and Dr. Aya Ludin-Tal. Imaging was performed on Tg(lck:GFP) zebra-

fish crossed into a nacre-/- background, at between 9 and 13 dpf. All adult and larval zebrafish were

maintained according to protocols approved by the Stanford Administrative Panel on Laboratory

Animal Care.

Microscopy
Imaging was performed on a single-plane illumination microscope constructed as specified in

Pitrone et al., 2013, with the exception that a Prior ProScan XY stage (Prior Scientific) coupled to a

Zaber T-LLS 105 stage (Zaber Technologies) was used for sample movement. The light sheet was

generated using an Olympus UMPLFLN10XW objective (NA = 0.3) and detection was performed

with an Olympus UMPLFLN20XW objective (NA = 0.5) and an achromatic doublet tube lens (AC508-

180-A-ML, Thorlabs). Images were recorded either on a Retiga 2000R camera (Qimaging) or an Ace

acA2040 (Basler). For the Ace ac2040 camera, a meniscus lens (LE1418-A - O2’ N-BK7, Thorlabs)

was added as a zoom lens, to match the image pixel width between the two cameras at :37�m. The

fluorescence source was an Obis LS 488 nm laser (Coherent), and the microscope was controlled by

Micro-Manager.

Zebrafish between 9 and 13 dpf were anesthetized with Tricaine-S (MS-222, Pentair; .008% w/v,

buffered to pH 7) and embedded in 2% low melting point agarose (Lonza SeaPlaque, #50100) with

.004% w/v Tricaine. For imaging, the agarose was submerged in E3 with .008% w/v Tricaine and 50

mM Hepes. With the exception of Figure 2 and Figure 2—video 1, tiled z-stacks were obtained

every 45 s for at least 180 timepoints, with a field of view of at least 592 �m (dorsal-ventral axis) by

1200 �m (anterior-posterior axis), in the tail region posterior to the anus. For Figure 2A and Fig-

ure 2—video 1, a z-stack was obtained every 12 s for 1100 timepoints, with a field of view of 757 �
568 mm (the first 900 timepoints are shown). For statistical comparison with the remainder of the

data, trajectories from this final dataset were subsampled in time to give 48 s timesteps. Data was

acquired with 2 � 2 binning, for an image pixel width of .74 mm.

For imaging in the presence of Rockout, embedded fish were submerged in E3 with .008% w/v

Tricaine and 50 mM Hepes plus 12 mM Rockout (Sigma Aldrich #555553). For paired control/Rockout

trials, fish were imaged for 2.5 hr in control conditions, followed by 2.5 hr in Rockout conditions over

the same field of view.
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Single-cell RNA sequencing
Thirty 15 dpf Tg(lck:GFP) zebrafish were euthanized using .04% w/v Tricaine and transected poste-

rior to the anus. Tail portions were pooled into HBSS (ThermoFisher #14025092) on ice. Tails were

dissociated by incubating with 100 �g=mL Liberase-TL (Sigma Aldrich #5401020001) at room temper-

ature for 20 min, followed by trituration with a 23 gauge needle. The cell suspension was filtered

through a 40 �m filter and washed once in HBSS. GFP+ cells were sorted from an unbiased FSC-SSC

gate on a Sony SH800 cell sorter into 384-well hard-shell PCR plates (Bio-Rad HSP3901) containing

.4 ml of lysis buffer, prepared as described previously (Tabula Muris Consortium et al., 2018).

Reverse transcription following a Smart-Seq2 protocol, and Illumina library preparation, were carried

out as described previously (Tabula Muris Consortium et al., 2018), except that following cDNA

amplification, cDNA was diluted uniformly to a mean target concentration of :4 ng=�l for library prep-

aration. Libraries were sequenced on the NovaSeq 6000 Sequencing System (Illumina) using 2 � 100

bp paired-end reads.

Image processing and cell tracking
Tiles were assembled based on recorded stage coordinates and a Maximum Z projection was

applied to Z stacks. Sample drift in x and y was subtracted by identifying and tracking autofluores-

cent pigment spots. In particular, the coordinates of 1–3 isolated pigment spots were identified

manually at the first timestep; at each timestep, the brightness centroid was computed for a circle

with a 25 pixel radius around the previous centroid, and the average trajectory of the pixel spots

was rounded to the nearest pixel and subtracted from the timeseries. Prior to cell segmentation, the

average image across the whole timecourse was subtracted from each timestep. For data recorded

on the Retiga 2000R camera, prior to segmentation the image was thresholded at the 30th pixel per-

centile and the maximum pixel value was fixed so that .4% of pixels were saturated. For data

recorded on the Basler Ace acA2040 camera, no lower threshold was used and the maximum pixel

value at each timepoint was fixed so that .2% of pixels were saturated. Ilastik software

(Sommer et al., 2011) was used for cell segmentation and tracking: the Ilastik pixel classification

module was used to classify foreground and background, and the manual tracking module was used

to identify and track cells. Tracks were terminated if two segmented cells collided and it was not

possible to disambiguate, or if a segmented cell was lost due to passing into an autofluorescent

region or due to imperfections in segmentation and/or illumination. To define trajectories, the

brightness centroid of each cell in x and y at each timestep was computed from Ilastik tracking

masks and the Maximum Z projection. Processing steps not using Ilastik were performed using

Python 3.6 (code available at: https://github.com/erjerison/TCellMigration; Jerison, 2020; copy

archived at https://github.com/elifesciences-publications/TCellMigration).

Trajectory analysis
Trajectories with at least 30 consecutive steps were included in the analysis; for MSD calculations,

trajectories that included all time intervals were included. For calculations of power spectra, single

missing timesteps were linearly interpolated based on the two adjacent positions, and computations

were performed on the longest consecutive segment for each trajectory. For the M. musculum data,

the time interval was 30 s. For the Dictyostelium data, timesteps were subsampled from the original

to give an interval of 20 s. Unless otherwise noted, statistics are reported as the median of the statis-

tic on a bootstrap over trajectories.

Mean-squared displacements were computed along each trajectory as:

MSDðt ¼mtintÞ ¼
1

N�m

X

N�m

s¼1

jj~xðmþ sÞ�~xðsÞjj2; (4)

where N is the total number of timesteps and tint is the time interval. The overall MSD was computed

by averaging the MSDs for each trajectory, and 95% confidence intervals were calculated via a boot-

strap over trajectories.

The overall MSD was fit to:

MSDðt Þ ¼ 4S2Pt ð1þP

t
ðe�t

P � 1ÞÞþs2; (5)
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which we note is the common formula for mean squared displacement in both the Ornstein-Uheln-

beck model (see Appendix 1) and in the Kratky-Porod wormlike chain model. Unless otherwise

noted, fitting was performed using the scipy.optimize.curvefit function in scipy 1.3.0; fitting was per-

formed in log space and weighted by computed confidence intervals.

The velocity power spectrum was computed based on the vector of secant-approximated veloci-

ties for each trajectory. Velocity vectors were zero-padded to 400 timesteps, and the fourier trans-

forms of the velocity components were computed using the the fft function in numpy (1.16.4).

Letting the fourier-transformed velocity components for trajectory m be vxðk;mÞ, vyðk;mÞ, the power

spectrum for each trajectory was computed as:

PSDðk;mÞ ¼ 1

N2

N

Nm

X

i¼x;y

ðjjviðk;mÞjj2 þjjviðN� k;mÞjj2Þ; 1<k<N

2
(6)

PSDð0;mÞ ¼ 1

N2

N

Nm

X

i¼x;y

jjvið0;mÞjj2 (7)

PSDðN
2
;mÞ ¼ 1

N2

N

Nm

X

i¼x;y

jjvið
N

2
;mÞjj2; (8)

where N ¼ 400 and Nm is the length of trajectory m. The overall PSD was computed as the average

over the PSDs for each trajectory:

PSDðkÞ ¼ 1

n

X

n

m¼1

PSDðk;mÞ; (9)

where n is the number of trajectories. For Figure 1D, a piecewise linear function was fit to the PSD

in log space; we plot the high-frequency fitted line and a line with slope 0.

Following (Petrovskii et al., 2011), we calculated the distribution of bout lengths within a trajec-

tory as the distribution of x displacements between reversals in direction in x, divided by the average

of these displacements within each trajectory. The distribution was calculated using the numpy.histo-

gram function on percentile bins with the option density = True; the x locations of points were deter-

mined based on the average value of points in each bin. We fit the distribution to a stretched

exponential function f ðxÞ ¼ Ae�gxb ; the fitted value of the stretch parameter b was .9.

The overall speed distribution was computed by collecting secant-approximated speeds across

all trajectories and timepoints; similarly, the overall turn angle distribution was computed by collect-

ing all relative angles between consecutive segments. For the Kolmogorov-Smirnov (KS) test, the

overall CDFs of speeds and turn angles were estimated by measuring the cumulative frequency over

25 percentile bins and performing linear interpolation to yield a continuous function. A two-sided KS

test (scipy.stats.kstest) was performed for the sets of speeds and turn angles of each trajectory.

We evaluated the fraction of the variance in cell speeds that can be explained by sample identity

by fitting a linear model with indicator variables on the sample identity as predictor variables. We

used the LinearRegression function of sklearn.linear_model to fit the model, and the ‘score’ method

to evaluate R2, the fraction of the variance explained by this model.

Turn angle distributions for each speed class were computed by collecting all relative angles

between consecutive segments amongst cells in that speed class; the distributions were symmetric

about q = 0 and so were folded to be between 0 and p radians. 95% confidence intervals were cal-

culated based on a bootstrap over trajectories in each speed class. For the relationship between

local speed and turn angles (Figure 2B), the local speed was estimated as the average speed of the

two consecutive steps surrounding a turn. Turns were binned based on the local speed, and the

average of the cosine of the turn angles was computed for each bin. For this and other binned statis-

tics, the x location of the bin was fixed to be the average value for the points in that bin.

To estimate the rate of speed switching, all trajectories of at least 117 min in length were used.

The average speed of each trajectory was measured on 19.5 min intervals; 19.5 min was chosen to

minimize the bias-variance trade-off. Specifically, because every cell samples speeds from a distribu-

tion, there is trade-off between measuring speeds on intervals that are too short, which may not
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give a good estimate of the mean, and intervals that are too long, where cells may switch during the

interval. To minimize this trade-off, the interval that maximized the rank correlation between adja-

cent non-overlapping blocks was used. The average speed of each cell was measured on non-over-

lapping intervals, and the Spearman rank correlation coefficient between all pairs of intervals was

computed. The correlation as a function of time was calculated as the average over all pairs of inter-

vals with the same difference in start times. We computed 95% confidence on a bootstrap over tra-

jectories. For the null model, we permuted speeds amongst the trajectories on each interval; we

calculated 95% confidence intervals over the permutations.

For Figure 3, the average of the cosine of turn angles between adjacent steps was calculated for

each trajectory, as well as the average over all adjacent steps of the secant approximated speeds.

For Figure 3D, the correlation between local speed and turns was computed as the Pearson correla-

tion coefficient between the local speed, as defined above, and turn angles across the set of adja-

cent steps in the trajectory.

To estimate the fraction of the variance in turning behavior explained by the cell speed, we fit a

spline curve (UnivariateSpline class of scipy 1.3.0; default parameters) to the relationship between

speed and the average of the cosine of the turn angles (Figure 3—figure supplement 1A). Letting

the spline function be f , we estimated the variance accounted for by the speed as Vs ¼ Varðf ðSmÞÞ,
where the index m labels trajectories. We estimated the variance in the means due to variation within

trajectories, which we called stochasticity, as Vst ¼ 1

n

Pn
m¼1

1

km�1
Varjðcos �jmÞ, where n is the total num-

ber of trajectories, km is the number of turn angles within trajectory m, and cos �jm is the cosine of the

turn angle j in trajectory m. Remaining variance we classified as other (Figure 3—figure supplement

1B); this may be due to imperfections in the spline model, other experimental noise, or additional

biological variability.

The persistence time was defined to be the time elapsed before the trajectory turns at least p
2

radians, averaged along the trajectory. Specifically, letting the displacement between timepoints s

and sþ 1 be~xðsÞ, the persistence time along each trajectory was calculated as:

~P¼ 1

n

X

n

s¼1

t ðsÞ; t ðsÞ ¼
X

m�1

t¼s

tint (10)

where m>s is the first timestep for which~xðsÞ �~xðmÞ<0, tint is the time interval, and n is the final base

point for which m�N, where N is the final timepoint. For Figure 4A, trajectories were binned into

mean speed deciles, and the average persistence time was calculated over trajectories in the bin;

error bars represent 95% confidence intervals on a bootstrap over trajectories. We also repeated

this analysis to measure the average time elapsed before the trajectory turns at least p
6
radians (Fig-

ure 4—figure supplement 2).

The effective diffusion coefficient at time t was measured as:

Deff ðt Þ ¼
MSDðt Þ

4t
: (11)

To measure Deff ðt Þ as a function of S, cells were divided into speed bins (with 5% of the speed

distribution per bin); Deff ðt Þ for each speed bin was measured by averaging the Deff ðt Þ across trajec-
tories, and error bars were computed based on a bootstrap over all trajectories. Note that Deff ðt Þ
will be independent of t only if diffusion scaling is respected, so that the collapse of the data in

Figure 4B is additional corroboration that the trajectories behave diffusively at long times.

As shown in the models section of the SI below, under the UPT model:

Deff / S2; (12)

whereas under the SPC model,

Deff / S2ðS
a
þbÞ; (13)

where a and b are fixed across all trajectories. We fixed a and b by fitting a line to the persistence

time relationship in Figure 1C; note that this is a short-time statistic and need not a priori predict

the effective diffusion constant at longer times. We fit the UPT model (dashed line) and the SPC
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model (solid) to the measured Deff as a function of S; in both cases, there was one fitting parameter

which was the constant of proportionality, which allows for an offset on the y-axis in log space but

does not change the shape of the curve.

Analysis of scRNAseq data
Reads were aligned to the Zebrafish reference genome (genome release: GRCz10; annotations:

GRCz10.85) using STAR (2.5) Dobin et al., 2013; reads aligned to each gene were counted using

the htseq-count function of HTseq (0.8.0) Anders et al., 2015, with the options -m intersection-non-

empty and –nonunique all. Note that the final option counts reads that align to a location with more

than one annotated feature (e.g. overlapping ORFs) as belonging to both features. This is necessary

because of mis-annotation of the T cell receptor light chain constant region in the zebrafish refer-

ence genome; both ENSDARG00000075807 (traj39) and ENSDARG00000104132 (traj28) contain the

trac, so that reads mapping to trac would otherwise be discarded.

Cells were filtered if they expressed fewer than 650 genes or more than 3250 genes, and if more

than 8% of reads were of mitochondrial origin. We used UMAP (0.3.1) with the default options to

embed the log-transformed counts table in two dimensions, including all genes expressed in at least

10% of cells; and HDBSCAN (0.8.22) with min_samples = 10 to call clusters (Figure 6—figure sup-

plement 1A). Comparison with the index sort data (Figure 6—figure supplement 1B) showed that

cells from the larger cluster had FSC-BSC consistent with lymphocytes, whereas cells from the other

cluster had higher FSC and BSC. We called the major cluster as the first cell group, excluding the 4

cells with BSC>2� 10
5, and other cells as the second group. We measured differential expression of

genes between the two clusters as: D ¼ 1

n

Pn
i¼1

log2ðE1iÞ � 1

m

Pm
i¼1

log2ðE2iÞ, where E1i are expression

values, in counts per million (CPM) + 1, for the first cluster, n is the number of cells in this cluster, E2i

are expression values (in CPM+1) for the second cluster, and m is the number of cells in this cluster.

(Note that this is the log of the ratio of the geometric means within each cluster.) In

Supplementary file 2, we report the genes with D> log2 10 and p<:01 (Wilcoxon rank-sum test, Bon-

feronni-corrected.) Genes enriched in the larger cluster included the T cell and immune-related

genes tagapa, tagapb, ccr9a, tnfrs9b, il2rb, and ptprc (Tabula Muris Consortium et al., 2018); we

also tested for expression of the T cell receptor light chain constant region (trac; expression esti-

mated based on the expression of ENSDARG00000075807). Based on these markers, we identified

the larger group (n = 330) as T cells. The significantly differentially expressed genes enriched in this

group also included arpc1b, wasb, arhgdig, coro1a, scinlb, and capgb, which we classified as

belonging to the WASP/ARP2/3 pathway based on the literature (Vicente-Manzanares et al.,

2002). Finally, we observed very little expression of markers associated with other types of immune

cells (the B cell light chain igic1s, the B cell marker ccl35.2, and the neutrophil and macrophage

markers mpeg1 and mpx (Tang et al., 2017) in either group (Figure 6B, Figure 6—figure supple-

ment 2). The genes most significantly enriched in the non-T cell group include keratin proteins (krt8,

KRT1), as well as ahnak (Figure 6—figure supplement 2, Supplementary file 2). Based on these

markers, we identified these cells as epithelial cells, possibly keratinocytes (Tabula Muris Consor-

tium et al., 2018). We note that we observed GFP signal in the somite region of the Tg(lck:GFP) tail

via microscopy (see, e.g., Figure 1A and Movie S1) which we did not observe in wildtype nacre-/-

zebrafish, suggesting that these cells may mis-express the marker.

To analyze finer-scale variation within the T cell cluster, we used the self-assembling manifold

algorithm method from Tarashansky et al., 2019. We first used the SAM algorithm with parameters

thresh = 0.1 and k = 10 to perform dimensional reduction. Visualization of a UMAP projection

together with the labels from our sort plates (Figure 6—figure supplement 3) showed that there

was a plate effect related to p1; we excluded this plate from the remainder of the analysis. We re-

ran the SAM algorithm using the remaining (n = 237) T cells, with parameters thresh = 0.1, k = 10,

to produce the dimensional reduction shown in Figure 6A. Cluster labels were assigned using the

KMeans class in sklearn.cluster. We measured differential expression of genes between the two sub-

types as described above. In Supplementary file 1, we report the genes with D> log2 10 and p<:01

(Wilcoxon rank-sum test, Bonferonni-corrected), for the two subtypes. In Figure 6B, we show a sub-

set of markers associated with the whole T cell cluster, as well as selected marker genes between

the two subtypes.
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To identify potential co-variation with arpc1b expression amongst the T cells, we computed the

Spearman rank correlation between expression of arpc1b (in counts per million) and all other genes

expressed in at least 20% of cells. In each calculation of pairwise correlation coefficient, we excluded

cells with zero counts for both genes to avoid biasing correlations upwards due to spurious points at

the origin. We calculated p values using a permutation test: we permuted cell labels and re-calcu-

lated all correlation coefficients; p-values were calculated as the proportion of observations of a cor-

relation coefficient higher than the observed coefficient, multiplied by the number of genes tested

(Bonferonni correction).
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Appendix 1

Persistent random walks: the uniform persistence time
(UPT) and the speed-persistence coupling (SPC) models
The infinitesimal model most commonly used to describe metazoan cell migration is the

Orenstein-Uhlenbeck model (OU) (Uhlenbeck and Ornstein, 1930), which has also been

called the persistent random walk model (PRW) in the context of cell migration (Wu et al.,

2014). While we have chosen this model for concreteness, the statistical features discussed

below are also in common to a number of other models that include some directional

persistence but are diffusive at long times, including the Kratky-Porod wormlike chain model

(Doi and Edwards, 1988). We briefly review some of the standard results which we use to

compare to data below.

Under the OU model, the dynamics of a cell are described by:

dviðtÞ
dt

¼� 1

P
viðtÞdtþ

S
ffiffiffi

P
p ht; (14)

where S is the speed parameter; P is the persistence time parameter; ht is a Gaussian white

noise term; and i¼ x;y; z. This model, considered the prototypical noisy relaxation process,

produces two main qualitative features: trajectories that turn smoothly (i.e. directional

persistence), and diffusive behavior at times t� P. We note that fluctuations in velocity and

speed along the trajectory are also features of this model. In particular, the velocity-velocity

autocorrelation function is given by:

hviðtÞviðsÞi ¼ S2e�
jt�sj
P : (15)

Setting t¼ s, we see that the speed parameter S is proportional to the root-mean squared

speed: S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h1
n

Pn
i viðtÞ

2i
q

, where n is the number of dimensions. Because the distribution of

velocities generated by the model is Gaussian, S is also proportional to the mean speed. The

decay of the velocity autocorrelation in each component sets the turning timescale at P; at

long times the directions of motion are uncorrelated.

The mean-squared displacement (MSD) after a time interval t is given by:

hð~xðt Þ�~xð0ÞÞ2i ¼ 2nS2Pt ð1þP

t
ðe�t

P � 1ÞÞ; (16)

where n is the number of dimensions. The MSD scales advectively, as nS2t 2, in the limit of

t � P, and diffusively, as 2nS2Pt , in the limit of t � P. Thus the model predicts that hð~xðt Þ�~xð0ÞÞ2i
t

will approach a constant value of 2nS2P at long times, which defines the effective diffusion

constant to be 1

2
S2P.

We refer to the OU model with fixed persistence time parameter P (but potentially variable

speed parameters S) as the uniform persistence time (UPT) model. We note that under the OU

model, the MSD and PSD depend on the speed parameter S only through the constant scale

factor S2: for fixed P, the quantities hð~xðt Þ�~xð0ÞÞ2i
S2

and hviðf Þ2i
S2

are independent of speed, as are the

normalized quantities hð~xðt Þ�~xð0ÞÞ2i
hð~xðt 0Þ�~xð0ÞÞ2i

and hviðf Þ2i
hviðf0Þ2i

, where t 0 and f0 are a chosen time interval and

frequency, respectively. (Note that this is also true of the full dynamics: we can eliminate the

dependence on S by transforming to the variable ~v ¼ v
S
, or measuring distance in units

proportional to S.) In particular, the effective diffusion constant Deff ¼ 1

2
S2P scales with S2.

Our observation of a linear relationship between measured mean speeds and correlation

times suggests the following constrained form of the OU model, which we have called the

speed-persistence coupling (SPC) model:
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dviðtÞ
dt

¼� 1

S
a
þb

viðtÞþ
S
ffiffiffiffiffiffiffiffiffiffiffi

S
a
þb

q ht; (17)

where a is a constant with units of acceleration; b is a constant with units of time; and both are

fixed across all cells.

In this model, the effective diffusion constant is:

Deff ¼
1

2
S2ðS

a
þbÞ: (18)

Under the SPC model, the control parameter S is proportional to the cell’s mean speed, so

that this observable fully specifies its dynamics.

Finally, we note that with fixed S and P, these models still produce variation in both local

speed and turning behavior along trajectories; the control parameters, together with

Equation 14, set the distributions of these quantities.

Effects of finite-length trajectories, sampling intervals,
noise, and distributions of persistence time on speed-
persistence coupling
Measurements of speed and persistence time are imperfect estimators of the underlying

continuous process. Here we address whether statistical artifacts could generate the observed

correlations between speed and persistence time. In particular, the finite sampling interval

introduces a bias downwards in all speed estimates, because some turns are missed. Because

this effect is stronger for less-persistent cells, which turn more, we expect it to introduce a

correlation between the measured speed and the measured persistence time.

To evaluate the influence that this may have had on our data, we simulated a collection of

cells with the same speeds as our measured cells under the OU model. Simulations were

performed using the velocity update rule in Equation 14 (Gillespie, 1996), with 20 simulated

intervals dt per sampling interval. Position coordinates were determined by numerical

integration of the velocities along the simulated trajectories. Noise in centroid locations was

included by adding a Gaussian random variable to x and y positions. We conservatively set the

noise parameter at s ¼ 3�m per sampling interval; this was chosen as an estimate of the

combined effects of true technical noise and changes in cell shape during the interval. Each

simulated trajectory was 50 sampling intervals (1000 microscopic timesteps) in length. To

match the measurement, sampling intervals were assigned to be 45 s in length. We measured

both mean speeds and correlation times on the simulated trajectories as defined in Materials

and methods.

We first assessed whether the SPC model, defined in the previous section, with the

addition of noise in the centroid locations, gave the expected dependence of measured

persistence time on measured cell speed (Appendix 1—figure 1B). Next, we simulated a

collection of cells with the same set of speeds as in the data, with a constant persistence time

parameter P (the UPT model), to check whether the finite length of the trajectories induced a

correlation between measured speeds and persistence times (Appendix 1—figure 1C). We

did not observe a significant effect. Next, we added centroid location noise to the UPT model.

The addition of noise does induce a correlation at the slow end of the speed spectrum

(Appendix 1—figure 1D); this is because cells that happen to have turned more will appear

slower. However, this effect becomes negligible for cells with speeds above the noise level.

We note that this likely contributes to the measured propensity for sharp turns amongst the

slowest cells, and may lead to misassignment between the two lowest speed classes.

Jerison and Quake. eLife 2020;9:e53933. DOI: https://doi.org/10.7554/eLife.53933 23 of 26

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.53933


A B C

D E F

Appendix 1—figure 1. Comparisons between speed-persistence time relationship in simula-

tions and data. (A) Data (as in Figure 4A). (B) Simulation of the SPC model with empirical

parameters (see Appendix 1 for details). (C) Simulation of uniform persistence time (UPT)

model, with speeds and persistence times measured as in the data. Biases introduced by

measured speeds and persistence times do not lead to an observable correlation. (D)

Simulation of UPT model with a conservative estimate of mislocation noise. A spurious

correllation is induced at low cell speeds, but cannot account for the trend across cell speeds

that we observe. (E) Simulation of a model where the predicted persistence times have been

reshuffled amongst the cells, to simulate an empirically-realistic model where persistence

times vary but are uncorrelated with speed. This does not generate a significant bias in the

speed-persistence relationship. (F) Model with reshuffled persistence times, as in E., and

mislocation noise. As in D., this leads to a spurious correlation at low speeds but no other

significant effects.

We next evaluated whether a model where both S and P varied in a manner consistent with

the data, but were uncorrelated with each other, could induce a correlation between

measured speed and persistence time. Such a correlation could appear on the faster end of

the speed spectrum due to variable P, because the fastest measured cells are biased to having

been both fast and particularly persistent. We evaluated the size of this effect in our data by

simulating a collection of cells with the observed speed distribution, as before, permuting the

predicted P parameters from the SPC model amongst the simulated cells. We found that this

did not measurably bias the speed-persistence relationship (Appendix 1—figure 1E). Finally,

we simulated the uncorrelated S and P model with the addition of centroid location noise

(Appendix 1—figure 1F).

From this analysis, we concluded that noise in the locations creates a spurious correlation

between measured speed and measured persistence time at the slow end of the speed

spectrum, but that this effect cannot account for the consistent correlation across speeds that
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we observe; and that a model with variable P that is uncorrelated with S also cannot account

for our observations.

Potential effects of fin fold boundary on MSD
As noted in the text, we observed that trajectories tended to stay within the tail fin and larval

fin fold (Figure 1—figure supplement 1), without crossing into the interior muscle region,

suggesting a partial barrier between these zones. In principle, such a barrier could lead to

saturation of the MSD. If present, this effect would be strongest for trajectories in the regions

of the fin fold on the margins of the fish (Figure 1—figure supplement 1). To assess whether

this effect could be driving the observed transition away from advective/superdiffusive

behavior, we took two approaches. First, we note that the typical timescale between turns

(Figure 4A) is 2 min, and diffusive scaling is reached by t ¼ 9 min (Figure 1C inset,

Figure 4B). Over 9 min, the median cell experiences an average displacement of 15 �m, while

the 80th percentile cell experiences an average displacement of 40 �m. Given that the width

of the fin fold is about 200 �m (although sometimes narrower, Figure 1—figure supplement

1), we would not expect boundary effects to be significant at the transition timescale. To

further assess this, we calculated the MSD as a function of time lag on the control sample

shown in Figure 2A–B and Figure 2—video 1. This sample includes only the tail fin region,

without fin fold boundary effects. Data for this sample was acquired at a slightly different time

interval (see Materials and methods), and so it was not pooled into the overall MSD

calculation. We calculated MSD as a function of time lag for this sample and compared it to

the MSD calculated using all other control samples, and found very good agreement

(Appendix 1—figure 2). (Note that the error bars are 95% confidence intervals calculated on a

bootstrap over trajectories; the larger error bars for the held-out sample reflect the smaller

number of trajectories.) We thus concluded that barrier effects on the margins of the fin fold

did not drive the transition we observed in the MSD.
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Appendix 1—figure 2. MSD measured on all control trajectories except those from the sample

shown in Figure 2, compared with MSD measured on the trajectories from the held-out sample.

All trajectories for this sample were measured in the tail fin area, and so are not subject to

potential effects due to a boundary between the fin fold and muscle region of the tail

(Figure 1—figure supplement 1). We do not observe a difference between these

measurements. Error bars represent 95% confidence intervals on a bootstrap over trajectories.
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